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The virtually instantaneous three-dimensional concentration fields in the self-similar 
region of natural or unexcited, circularly excited and weakly buoyant round jets 
of Reynolds number based on nozzle diameter of 1000 to 4000 are measured ex- 
perimentally at a spatial resolution of the order of the Kolmogorov length scale. 
Isoconcentration surfaces are extracted from the concentration field. These surfaces 
along with their geometrical parameters are used to deduce the structure and modal 
composition of the jet. The concentration gradient field is calculated, and its local 
topology is classified using critical-point concepts. 

Large-scale structure is evident in the form of ‘clumps’ of higher-concentration jet 
fluid. The structure, which has a downstream extent of about the local jet diameter, 
is roughly axisymmetric with a conical downstream end. This structure appears to 
be present only in fully turbulent jets. The antisymmetric two-dimensional images 
previously thought to be axial slices of an expanding spiral turn out in our data to 
instead be slices of a simple sinusoid in three dimensions. This result suggests that 
the helical mode, when present, is in the form of a pair of counter-rotating spirals, or 
that the +1 and -1 modes are simultaneously present in the flow, with their relative 
phase set by initial conditions. 

In terms of local structure, regions with a large magnitude in concentration gradient 
are shown to have a local topology which is roughly axisymmetric and compressed 
along the axis of symmetry. Such regions, which would be locally planar and sheet- 
like, may correspond to the superposition of several of the layer-like structures which 
are the basic structure of the fine-scale passive scalar field (Buch & Dahm 1991; 
Ruetsch & Maxey 1991). 

1. Introduction 
The search for organized or coherent structure in turbulent shear flows has been a 

field of great interest for the last two decades (Cantwell 1981; Fiedler 1988). Although 
many researchers have shown that large-scale or coherent structure exists in the far- 
field region of planar free mixing layers and plays a significant role in their mixing 
(Brown & Roshko 1974; Fiedler 1974; Breidenthal 1981), a similar description for 

t Present address: Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 
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the self-similar region of its three-dimensional analogue, the round jet, has yet to be 
well-established. 

It has been experimentally known for at least twenty years that the near field of 
a round jet is an axisymmetric mixing layer, dominated by vortex rings generated 
by the Kelvin-Helmholtz instability (Bradshaw, Ferriss & Johnson 1964; Crow & 
Champagne 1971). These axisymmetric vortex rings were thought to bc a manifes- 
tation of the dominant axisymmetric mode predicted by linearized stability theory 
(Batchelor & Gill 1962; Michalke 1971). In the far field of the jet, however, classical 
integral visualization methods such as shadowgraphy and schlieren showed a nearly 
homogeneous turbulent flow dominated by small spatial scales. This result led to a 
model of the jet consisting of a train of vortex rings in the near field which were 
then broken down into progressively smaller spatial scales as they were convected 
downstream. 

In 1983, Dimotakis, Miake-Lye & Papantoniou visualized an internal axial ‘slice’ 
of the far field of a water jet using the laser-induced fluorescence (LIF) technique 
at Reynolds numbers ranging from 650 to 10000. Their two-dimensional instan- 
taneous axial images of the jet concentration field were radically different from 
the traditional model : the flow was spatially inhomogeneous, with eddies (regions 
of approximately constant concentration) of a dimension comparable to the local 
jet diameter. Two morphologies were observed in these axial slices: the jet had 
either a roughly antisymmetric (zigzag), or symmetric, outline with respect to its 
axis. 

The large-scale structure of both gaseous and liquid jets has since been the subject 
of several investigations (Dowling & Dimotakis 1990; Dahm & Dimotakis 1990). 
In many of these studies, conclusions arc drawn about the far-field structure of the 
jet from a series of two-dimensional axial slices of an inherently three-dimensional 
flow. In liquid jets, Prasad & Sreenivasan (1990) were the first (to our knowledge) 
to measure the virtually instantaneous three-dimensional concentration field in the 
transitional region of a turbulent round jet, but their measurements suffered from low 
out-of-plane spatial resolution (about 100 times their Kolmogorov scale) and weak 
signal. Recently, Dahm, Southerland & Buch (1991) have resolved the Batchelor scale 
with their four-dimensional (space plus time) concentration measurements in the far 
field of a coflowing jet, but they have had to sacrifice the overall picture in order to 
fully resolve the diffusion-limited length scales. 

In addition to investigating the large-scale structure, a three-dimensional concentra- 
tion measurement presents us with a new possibility to detect the modes predicted by 
Batchelor & Gill (1962) and Michalke (1971) for the mean velocity field. Linearized 
stability analyses of the round jet have shown for normal (e.g. axisymmetric, helical 
and double helical) mode disturbances that the most unstable or rapidly growing 
perturbation on a typical far-field Gaussian mean velocity profile is the helical, or 
lyll = 1, mode. From this result, it was concluded that the helical mode would be 
dominant in the far field. 

Although several experimental studies (Mattingly & Chang 1974; Strange & 
Crighton 1983; Petersen, Samet & Long 1988) have confirmed the existence of 
the helical mode based upon multipoint velocity measurements in the near field of 
both natural and excited jets, Tso & Hussain (1989) are to our knowledge the only 
researchers to search for this mode in the far field. They concluded from precondi- 
tioned multipoint velocity measurements in a Re = 6.9 x lo4 air jet that the helical 
mode was about four times as common as the next most common axisymmetric 
mode. 
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This helical mode must determine or ‘shape’ the large-scale structure of the far 
field of the jet, similarly to the near field, where the vortex rings are thought to arise 
from the dominant axisymmetric mode. It must also shape the large-scale patterns 
of a passive tracer convected by this (mean) velocity field, or what we would see in a 
visualization of the turbulent jet. Based upon the antisymmetric shapes seen in their 
planar visualizations, Dimotakis et al. (1983) proposed that the far field of the jet 
in three-dimensional flow visualizations would then be in the form of an ‘expanding 
spiral’ (an axial two-dimensional slice of a spiral would then be an antisymmetric 
zigzag). 

In this study, we make the assumption when attempting to identify these predicted 
modes in the concentration field that the large-scale structural ‘patterns’ in the 
concentration field are shaped by the helical mode (although precisely how this 
is achieved is unclear). It is therefore assumed after Dimotakis et al. (1983) that 
the far field of this flow is in the form of an expanding spiral, and the three- 
dimensional datasets shown here are deliberately biased: only those which show 
clearly antisymmetric shapes with respect to the jet axis are analysed. To further 
enhance our chances of detecting the supposedly dominant helical mode in the far 
field, circularly forced as well as natural jets are investigated. 

The volume of data that can be recorded and analysed is still limited by present 
technology. Given this limitation and our interest in large-scale structure, we chose 
to acquire data at a spatial resolution of about the Kolmogorov scale over the 
full extent of the flow. The concentration measurements presented here are there- 
fore under-resolved by two orders of magnitude in comparison with the diffusion- 
limited or Batchelor length scale. As such, these results complement the results of 
Dahm at al. (1991), who have fully spatially resolved the concentration field over a 
small piece of the flow (10% of their flow width). 

Furthermore, data of this type are also limited by our ability to acquire, store and 
process data in terms of the simple number of independent realizations. Results from 
eight datasets (out of a total of 30) are presented here. Although this is certainly much 
too small a number to obtain adequate statistics of the flow (cf. 4 3.1), conclusions 
can still be drawn in terms of qualitative larger-scale structural features, much like 
the work of Buch & Dahm (1991), who characterized the fine structure of the passive 
scalar field from five independent datasets. Results from planar flow visualizations 
over time (Yoda, Hesselink & Mungal 1992) implied that the large-scale structure in 
the flow was robust and common enough to be evident even in this limited number 
of realizations. 

Despite these limitations, the data still represent a significant advance over previous 
large-scale measurements, since they are (to our knowledge) the first three-dimensional 
concentration field measurements over the entire flow width at even this spatial 
resolution. The results presented here should therefore be seen as a first attempt to 
characterize and classify the three-dimensional structure in the far field of the jet. We 
use the data to investigate the instantaneous three-dimensional large-scale structure 
in the far field of the jet, and how the dominant helical mode predicted by stability 
theory ‘shapes’ this structure. The concentration gradient, which represents the flux of 
passive scalar, is calculated, and its local topology is investigated using critical-point 
concepts. 

Jets at Reynolds number 1000 to 4000 are investigated over distances of 30 to 
83 nozzle diameters downstream, corresponding to 2 to 4 local jet widths. Three- 
dimensional concentration measurements are obtained using the quantitative laser- 
induced fluorescence (LIF) technique and a rapidly scanned laser light sheet. Section 2 
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FIGURE 1. Schematic of the now facility. Pressurized air drives the dyed jet fluid into tank of still 
undyed water. The flow is illuminated by a pulsed laser light sheet scanned over an angle of 4" 
across the jet width, and the resultant laser-induced fluorescence is imaged onto film by a high-speed 
camera. Two perpendicular eccentric cams are used to circularly excite the jet by moving the nozzle 
in a circular orbit. 

describes the data acquisition methods and the characterization of the flow. Section 3 
starts with a discussion of the limitalions of the data. Based upon these limitations, the 
choice of the two relatively simple analysis methods used in this work are described 
and discussed. The concentration data are visualized and analysed by displaying 
three-dimensional isoconcentration surfaces and calculating some simple geometric 
parameters, respectively. We then calculate the concentration gradient field and 
analyze its topology using critical-point concepts. Section 4 presents and discusses 
our results. Our most unexpected result is that the far field of the turbulent round 
jet appears not to be in the form of an expanding spiral, but instead in the form 
of a pair of counter-rotating spirals, implying that the +1 and -1 helical modes are 
present simultaneously in this flow. 

2. Experimental details 
2.1. Flow ,facility 

The flow investigated here is a round water jet with Reynolds numbers based on 
the nozzle diameter do of Re=1000, 2000 and 4000. Since the mean turbulent 'flame 
length becomes independent of Re above 3000 (Dahm, Dimotakis & Broadwell 1984), 
the highest Re flow should be representative of turbulent jets, while the two lower Re 
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cases should be similar to the transitional Re cases studied by Dimotakis et al. (1983). 
The flow facility, illustrated in figure 1, is described in more detail in Yoda (1992). 
Pressurized air drives 80 pmol disodium fluorescein (Schmidt number Sc = 2075, 
from Buch & Dahm 1991) from a cylindrical reservoir tank through a honeycomb to 
eliminate swirl out of a nozzle ( d o  = 0.48 cm) into a hexagonal tank of clear water 
61 cm across and 100 cm deep. The jet nozzle (designed and built by W. C. Reynolds) 
is forced circularly with a variable-speed motor at a non-dimensionalized frequency 
or Strouhal number St  = 0.3. The amplitude of the forcing is the maximum possible 
with the apparatus (about 0.3do). 

In the experiments the ambient fluid is always slightly warmer than the jet fluid 
(by at least 1"C), and so negative buoyancy will eventually dominate the flow. The 
portion of the flow which is momentum-driven can however be estimated using the 
following argument: if stratification in the ambient fluid is negligible (< 1°C m-' in 
the experiments), the ceiling height? x, of the negatively buoyant jet can be measured 
as a function of the temperature differential between the jet and ambient fluids, and 
the results of Turner (1966) : 

x, = 1.85 F r d , ,  (2.1) 

The characteristic length scale describing the relative importance of momentum 
can be used to obtain an estimate of the Froude number Fr.  

and buoyant fluxes (M and B,  respectively), lLw, is then (Papanicolau & List 1988) 

po and pa are the jet and ambient fluid densities, respectively. Papanicolau & List 
found in their experiments on buoyant jets that in the region x'//M < 1, where x' is 
the downstream distance from the virtual origin, the flow was momentum-dominated. 
Chen & Rodi (1980) suggest from their review of experimental data a more stringent 
criterion for the region of the flow which is non-buoyant or momentum-driven:$ 

x' 
- < 0.5; (2.3) 
[M 

this criterion was met in these experiments. Buoyancy effects are essentially negligible 
at the two higher Re investigated (2000 and 4000) for temperature differentials of up 
to 5°C but they are quite significant at Re =low. 

In our region of interest, the dyed jet fluid should be mixed with at least twice as 
much ambient fluid from the arguments presented in the far-field mixing model of 
Broadwell (1989) and Dahm et a/. (1984), and therefore the dye must be significantly 
colder than the ambient fluid to achieve momentum-dominated flow in the far field. 
We present here data from both buoyancy-tainted (Fr  = 100, based on (2.1)) and 
momentum-driven jets at this Re. This weakly negatively buoyant case is referred to 
in this paper as the 'buoyant' jet. 

2.2. Data acquisition 
The flow is illuminated parallel to the jet axis from the side with a light sheet about 
1.5 mm thick from a 20 W copper vapour laser (MetaLaser Model 251) pulsed at 

t The ceiling height of a ncgatively buoyant jet is the maximum height (or depth) that the jet 
reaches before reversing flow. 

$ A factor of ( T C / ~ ) ' / ~  is ignored in this formulation (cf. Dowling 1988). 

I 1  F L M  279 
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10 kHz. The relatively thick sheet has a Rayleigh range slightly greater than the region 
of interest (17 cm along the radial y-direction) and spreads slightly (2%) along the 
downstream dimension (x, measured from the jet nozzle exit) as it propagates through 
the flow. A rotating mirror scans the pulsed light sheet across the jet width (Figure 
1). The total radial scan angle is very small (4"), resulting in virtually parallel slices 
of the concentration field. The light sheet illuminates the region 30d, < x < 83d,, 
corresponding to two to four local jet widths (local jet width 6(x') = 0.44~') in the 
far field of the jet. This region is beyond the minimum far-field location of x' = 20d, 
recommended by Dowling & Dimotakis (1990) based on self-similarity of the mean 
concentration field. 

The ,511 nm (green) line of the copper vapour laser excites fluorescence from the 
fluorescein in the jet fluid. Note that the maximum concentration of dye in the 
region of interest should be no more than one-third of the initial pure jet fluid 
concentration of 80 pmol, or 27 pmol at the farthcst upstream location, x /do  = 30. 
Our experimental calibrations verify the linear response of fluorescein (Koochesfahani 
& Dimotakis 1986) excited at this wavelength for our range of dye concentrations 
and for the light intensities used in the experiments (the maximum light exposure 
incident on the dye gmaX is of the order of 0.5 mJ cmP2). Furthermore, the effects 
of laser light attenuation are negligible in the data - in other words, there is little 
detectable decay in signal in our mean concentration profiles (Figure 4) as the laser 
light sheet propagates through the flow. 

The images of fluorescence intensity are recorded at virtually normal incidence 
by a high-speed drum camera (Cordin Dynafax Model 350) converted to a streak 
camera with a Nikon f/1.2 50mm focal length lens. The data are acquired at lo4 Hz 
(i.e. each laser pulse frames a single image) on 35 mm Kodak TMax 3200 film 
push-processed to ASA 12.500. Because the camera has a limited film capacity, we 
are limited to acquiring one dataset of 100 pictures per jet run. The photographs 
are taken through an orange filter (Kodak Wratten No. 1S), which admits only the 
red-shifted fluorescence. 

In all runs we wait at least twice the time t, for the jet front to reach the farthest 
downstream location of interest (t,(x) = x2/(12.4vRe), where v is the kinematic 
viscosity) after jet startup before acquiring data to ensure fully developed flow. The 
instantaneous three-dimensional data are also acquired before the jet front reaches 
the bottom of the tank, to avoid floor effects. 

This technique gives us x-y slices of the jet at different z-locations and different 
times. If however the data are acquired over a period of time which is so brief that 
no fluid element has been convected more than the minimum spatial resolution, we 
can say that the data are effectively instantaneous. The individual slice exposure of 
30-40 ns (= laser pulse length of 30 ns plus the additional fluorescence decay time of 
a few ns) is brief enough to freeze the flow within a slice. In addition, a fluid element 
will travel at most 1.7 mm (for Re = 4000, y = z = 0, x/d, = 30) downstream over 
the total data acquisition time of 10 ms (maximum of 100 images at 10 kHz). The 
spatial resolution is limited to the spacing between the x-y slices of 1.7 mm. The data 
are therefore effectively instantaneous to within our spatial resolution. 

To obtain the fluorescent dye (and therefore jet fluid) concentration, the light 
sheet profile must be directly measured in addition to the fluorescent intensity. To 
accomplish this, the light sheet is photographed as it propagates through a test cell 
filled with recirculating (to avoid photobleaching) 10 pmol fluorescein. The beam 
profile is stable to within a few percent during a single laser run, and so only one 
light-sheet profile calibration is performed per laser run. These measurements are 
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acquired on the same film as the jet slices using an identical camera lens and filter, and 
are converted back to light intensity using the procedure described in the following 
paragraphs. From these measurements of the light-sheet profile, we estimate that the 
maximum error inherent in our data acquisition system is about f7%, corresponding 
to a r.m.s. error of f5%. 

The images (both jet data and light-sheet profiles) are digitized by a scanning 
microdensitometer (Perkin-Elmer PDS Model 101OGM) into two-dimensional arrays 
of optical density D at 12 bits per pixel. They are then downloaded to a Silicon 
Graphics Iris workstation (Model 4D/220GTX), median filtered over a 5 x 5 window 
to remove small isolated defects and artifacts and are converted to fluorescent light 
intensity on the film using the relation (Goodman 1968) 

D - Do = -log,,( T/T , )  = y log,,(9t) , (2.4) 

where D is the optical density of the developed negative, Do is the gross fog optical 
density of the film (set by the digitization calibration to zero), T and T,, are the 
transmission (in percent) of the image and its background, respectively, .a is the light 
intensity incident on the film, and t is the time over which the film is exposed. The 
y-value of the film under our developing conditions is experimentally determined to 
be 1.04. After push processing the film to an ASA of 12500, calibrations (Yoda 1992) 
showed that for D > 0.6, the film obeyed (2.4) to within 5%. This film grain noise 
appears to be the major source of error in the data. 

Finally, the set of two-dimensional images of fluorescent intensity in the jet are 
divided by the appropriate light-sheet profile to obtain the passive scalar concentration 
field of the jet. The images are then rescaled to 8 bits per pixel (255 grey scales) and 
stacked into an x-y-z array. Note in these experiments that we have only thc relative 
concentration in this region of the flow. All concentrations will therefore be reported 
in this paper as a percentage value of the maximum instantaneous concentration seen 
in the region of interest. 

2.3. Characterization of the j o w  

In order to characterize the flow, measurements were taken of both the mean velocity 
profile at the jet nozzle and the mean concentration field along the jet axis. The 
velocity profile at the jet nozzle is measured using a low-density particle tracking 
technique, or particle tracking velocimetry (PTV) (Adrian 1986). A 2 mm thick light 
sheet from a copper vapour laser pulsed at 200-800 Hz illuminates the jet, which is 
seeded with 40 pm diameter alumina particles (seeding density e 30 particles ml-' of 
pure jet fluid). Up to a dozen pictures of the seeded jet are taken over six pulses of the 
laser, during which the flow moves 1.5d,, and the velocity is obtained by measuring 
the particle displacement over three to five laser pulses. Since the flow at the nozzle 
is steady, a composite velocity profile can be built up from several PTV pictures. 
The relatively thick (2 mm) light sheet ensures that a reasonable number of particles 
remain visible in the sheet over the exposure interval. 

Figure 2 shows the velocity profile obtained with this technique for the three 
Reynolds numbers studied. In all cases the particle tracks used to obtain the velocity 
profile are taken within one nozzle diameter of the nozzle exit. As can be seen in the 
figure, the velocity profile is symmetric and level in the centre of the nozzle, with the 
boundary-layer thickness increasing as Re decreases. We approximate the boundary- 
layer velocity profile in this figure with a (half) Gaussian (Mattingly & Chang 1974). 
Using these fitted velocity profiles, we can calculate the jet momentum and mass 
fluxes (3, and m,, respectively) and use these quantities to define a momentum-based 

11-2 



320 M .  Ynda, L. Hesselink and M.G. Mungal 

I .6 

-1.0 0.5 0 0.5 1.0 
2yld0 

FIGURE 2. Normalized velocity profiles (u /u,  GS. 2y/d,) of the flow out the jet nozzle measured with 
PTV for Re = 1000 (circles), 2000 (triangles; vertically offset 0.2 units), and 4000 (plusses; vertically 
offset 0.4 unitsj. A horizontal line has been drawn across the top-hat part of the curve and a (half) 
Gaussian has been fitted to the sides of the profile (Mattingly & Chang 1974). In all cases the 
points used to obtain these values were taken within d ,  of' thc nozzlc exit. 

effective jet source velocity U, and diameter d" (Becker & Yamazaki 1978; Dahm & 
Dimotakis 1987): 

These quantities can then be used to define the momentum-based Reynolds number 
Re" : 

Re* is related to Re, to the Reynolds number based upon the nozzle diameter do and 
the velocity that would be expected from the measured mass flux at the nozzle and a 
top-hat velocity profile U,, as follows: 

d0 

d" 
Re* = Re- . (2.7) 

Re = 4000 therefore corresponds to Re* = 4400 ($ /do  = 0.90), Re = 2000 corresponds 
to Re' = 2300 (d * /d ,  = 0.86), and Re = 1000 corresponds to Re* = 1200 (d * /do  = 
0.83 j. Given these relatively minor differences between the flow parameters based 
upon initial flow conditions ( d ,  and U,) and those based upon the momentum and 
mass fluxes ( J o  and ho), the results presented here are non-dimensionalized with 
respect to initial flow conditions. 

The mean concentration field is obtained by taking time exposures of the flow 
over 1&20 local passage times (local passage time r = 6(x')/UC(x'j, where Uc(x') = 
6.2vRe/x' is the local centreline velocity and x = 83d0). Recirculation from the jet 
hitting the bottom of the ambient fluid tank makes it impossible to take data over 
longer periods; this relatively short averaging time is the largest source of the error of 
about 8% in the measurements. The averages are acquired on Kodak Ektar 25 film 
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FIGURE 3. The streamwise evolution of the mean jet centerline concentration. The normalized 
inverse of the centerline concentration i&&.~(x) is plotted us. the downstream distance in jet 
momentum diameters (x/d*) for the Re = 4000 (solid line), 2000 (dotted line; vertically offset 0.2 
units) and 1000 (dashed line; vertically offset 0.4 units) natural jets. The straight lines are fitted 
to the data with linear regression. The virtual origins of the Re = 4000, 2000, and 1000 jets are 
indicated by the square, circle and triangle, respectively. 

instead of the TMax 3200 used for the instantaneous measurements, because Ektar 
(unlike TMax) does not suffer from reciprocity failure, even over exposure times of 
several hundred seconds (Eastman 1991). 

From similarity considerations, the mean concentration on the centreline F,r(x) 
should decay as l/x’ (Chen & Rodi 1980): 

where c, is the concentration of pure jet fluid and y = (y2 + z ’ ) ~ / ~ / x ’  is the non- 
dimensionalized radial coordinate. After processing the images as described above 
to obtain the true concentration field, the location of the virtual origin x = x, (note 
x’ = x - x,) should be where the curve l/Ccl(x) us. x intersects the horizontal axis. 
Figure 3 is the graph of Z,,&,~(x) (em,, = the minimum mean concentration) us. the 
non-dimensionalized downstream coordinate x/d* for the three natural jet cases. The 
location of the virtual origin x, moves downstream with respect to the jet nozzle 
location as Re decreases (x, = 3.6d0 for Re = 4000, 5.7d, for Re = 2000, and 16.6d, 
for Re = 1000). As expected, the slopes of these curves are not identical, since only 
the case at the highest Re of 4000 is self-similar in mean concentration. 

Figure 4 shows the mean concentration for a fixed x-location normalized by its 
value on the centreline 2 (x, y)/Zcl(x) us. the non-dimensional radial coordinate v .  
In all cases, the radial concentration profile is symmetric and roughly self-similar, 
in agreement with (2.8). We have made no attempt to fit our data to a Gaussian 
profile (Chen & Rodi 1980), since again only the highest Re data are self-similar. 
Our measurements of the spreading rate S(x’)/x’ for these three different Re are 
all within 10% of each other and the commonly accepted value of 0.44, or a 25” 
angle. These downstream and radial mean concentration profiles verify the accuracy 
and validity of the LIF technique and show that our jet behaves normally in time 
average. 
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FIGURE 4. Radial mean concentration profiles. The normalized mean concentration (C(x, J I ) / ? ~ ) ( X ) )  

is plotted us. the non-dimensionalized radial coordinate ( y / ( x  - x0), y = 0 corresponds to the 
centreline) for the Re = 4000 (solid line), Re = 2000 (dotted line: vertically offset 0.2 units) and 
Re=1000 (dashed line; vertically offset 0.4 units) natural jets. Each of these radial profiles is the 
average of several profiles at different x-locations in non-dimensionalized coordinates. 

We attempted to measure means for the circularly forced and buoyant jets, but it 
was impossible to acquire an average over even a few local passage times because 
the enhanced spreading rate of these cases causes the flow to hit the walls of the 
hexagonal tank shortly after startup, resulting in severe recirculation. We are therefore 
unable to report either a spreading rate measurement or a measurement of the mean 
concentration for these cases, but our results indicate that the concentration decay on 
the centreline of all three different-Re circularly excited jets is very similar in shape. 
Given our inability to measure a virtual origin, and the uncertainty of whether the 
circularly excited jet even follows the scaling laws for the natural jet, the location of 
the virtual origin is simply defined at the nozzle for these cases (x, = 0). 

3. Data analysis 
3.1. Data acquisition limitations 

Although the methods described in the previous Section give effectively instanta- 
neous three-dimensional measurements of the passive scalar concentration field, the 
requirements to achieve 'instantaneous' data and the limitations imposed by present 
technology in terms of data acquisition speed limit us to a spatial resolution of about 
1% of the maximum jet width, or a spatial resolution size which is far greater than the 
diffusion-limited length scales. Furthermore, the sheer volume of data to be digitized 
and analysed limits us to just a few realizations of the three-dimensional concentra- 
tion field, or an inadequate number of realizations for statistical calculations. In this 
section the requirements for spatially weI1-resolved data and a statistically represen- 
tative number of realizations are presented, and the sorts of conclusions which can 
then be drawn from the data are discussed. 

Ideally, concentration measurements should resolve the smallest diffusion length 
scale in the flow, or the Batchelor scale 
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The constant of proportionality a is taken to be about 11 based on the measurements 
of Buch & Dahm (1991), giving a ,IB of 31 pm for our worst-case conditions at 
Re = 4000 and x /d ,  = 30. 

In order to investigate the large-scale structure in the jet, the flow should be 
investigated over its entire width and at least a few local widths in the downstream 
dimension. Even if it were technologically feasible to obtain measurements over 
such dimensions with a resolution of AB, the amount of data that would result 
from a single such three-dimensional measurement would be about 4 TBytes, or 
4 x 1OI2 Bytes ~ a data volume which would be impossible to record, much less 
analyse. Spatial resolution is therefore sacrificed in favour of an overall picture of the 
large-scale structure of the flow. The spatial resolution here of 1.7 mm is about 50 
times this diffusion-limited scale, implying that the concentration measurements are 
under-resolved by about two orders of magnitude. 

The spatial resolution is therefore of the order of the Kolmogorov scale AK 

about 1.4 mm for the worst-case conditions above. The spatial resolution is fixed in 
physical space, and therefore becomes progressively better in terms of the local length 
scales (which increase with the local jet diameter S(x’)) as we progress downstream. 

We would also ideally like to acquire enough independent realizations of the con- 
centration field to have a statistically representative picture of the flow Structure. The 
number of independent realizations required to obtain a good statistical representa- 
tion of the flow can be estimated using standard methods (Mendenhall, Scheaffer & 
Wackerly 1986, for example). For n (where n is large) concentration samples from a 
random set of values with a standard deviation of G, the magnitude of the error p 
expected in the mean concentration value can be estimated by 

= 2 (Gi) (3.3) 

Dowling & Dimotakis (1990) have reported a cr from concentration measurements in 
gaseous jets of about 22%. A dataset of about 80 realizations is therefore required to 
estimate the mean concentration field to within an accuracy of f5% - a data volume 
of about 320 MByte at even this intermediate spatial resolution. 

Up to six independent realizations of each case (different experimental runs) were 
acquired, but results from only two realizations of the Re=4000 natural jet and one 
realization of all other cases are presented in 4 owing to the large volume of data 
required by even this moderate spatial resolution (about 4 MByte per realization) and 
the significant amount of time and work required to process and analyse even a single 
realization. The data are therefore inappropriate for the calculation of statistics. 

So what can be learned from our three-dimensional concentration data, given 
the limits discussed above? We cannot resolve the fine-scale diffusion and mixing 
processes reported by Dahm et al. (1991), but the data are certainly appropriate for 
investigating the large-scale structure and instability modes present in the flow. Note 
that the data here are comparable in spatial resolution with those of other researchers 
who have investigated large-scale structure in two-dimensional studies (Dimotakis et 
al. 1983; Dahm & Dimotakis 1990). 

In addition, the concentration gradient field, which represents the flux of the passive 
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(a)  (b)  

FIGURE 5. (a )  An attracting node in a plane flanked by two saddle points. (b )  At a lower spatial 
resolution, the three critical points in (a) appear to be a singlc saddle point. 

scalar, can be calculated from the data. Owing to the limited spatial resolution, we 
cannot investigate the scalar dissipation or the isotropy of the concentration gradient 
field. We can however investigate the topology of this field, since the topology of the 
spatially under-resolved concentration gradient field must remain consistent with that 
of the fully resolved field. As an illustration, consider the situation in two dimensions 
of an attracting node between a pair of saddle points (Figure 5a). As the spatial 
resolution becomes worse, these three critical points will ‘blur’, and become a single 
saddle point (Figure 5b). At this spatial resolution, the specific number of critical 
points or their types cannot be resolved, but the general qualitative behaviour of 
the concentration gradient field - that is, that the concentration is increasing as one 
nears the critical point along the y-axis, and decreasing along the x-axis - remains 
consistent. 

Within the context of these limitations, we can therefore still investigate the large- 
scale structure of both the concentration field and its gradient, which represents 
the flux of passive scalar. The data are analysed using two general techniques. 
The concentration data are visualized as isoconcentration surfaces, and analysed by 
calculating some simple geometric parameters. The topology of the concentration 
gradient is analysed using critical-point concepts. 

3.2. The Concentration field 
The concentration data are visualized both as planar slices of the data volume 
and as three-dimensional surfaces of constant concentration, or isoconcentration 
surfaces. In isoconcentration surface visualization, we extract and display the surface 
which is the boundary surface between concentration values higher and lower than 
the prescribed threshold value. To follow the large-scale eddies in the flow, the 
instantaneous concentration data are rescaled by multiplying each concentration 
value by its distance from the virtual origin x’ (van Cruyningen 1990). The rescaled 
concentration value c is then 

(3.4) 
where cu is the original instantaneous concentration. This self-similar rescaling 
compensates for the l/x’ decay of the mean concentration (cf. (2.8)), and enables us 
to see a large diffuse eddy at the farthest downstream point in the flow in the same 
isoconcentration surface as a smaller more concentrated eddy upstream. 

A subsampled version of the dataset is then created by uniformly lowpass filtering 
the original data over a 3 x 3 ~ 3  window (to reduce noise and aliasing) and using 
every other point of the filtered data. This subsampled dataset will then have a 
spatial resolution half that of the original data, or 2.8 mm in physical space. Since 
we are more interested in the qualitative large-scale featurcs of the isovalue surfaces, 
this subsampled dataset is used for the visualizations to reduce the computational 

c (x, Y ?  z )  = X’CU(X, Y ,  4 , 
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overhead required. The surfaces are rendered using the Marching Cubes algorithm 
(Lorensen & Cline 1987) and in-house software written by P. C. Ning (Ning & 
Hesselink 199 1). The algorithm uses linear interpolation to determine a boundary 
or isoconcentration surface at the specified value and draws a surface consisting of 
triangles. 

In addition, we compute some geomctric parameters from the concentration data. 
All the parameters here are calculated from the median filtered original spatial 
resolution datasets. The concentration-based centroid coordinates (j,? j are calculated 
as a function of the downstream distance from the nozzle exit x: 

The value of the centroid at the furlhest upstream coordinate (x = 30d,) where the jet 
centre will have deviated the least in the region of interest from the vertical centreline 
is then subtracted from these coordinates, and the result is divided by the local jet 
width 6(x') to obtain the non-dimensionalized radial centroid coordinates (t, [) : 

The area d inside each concentration contour is calculated as a function of both 
concentration threshold and downstream distance : 

(3.7) cd(crh,x) = N p t s ( C  2 cth, x)AYAz 3 

where Cfh is the threshold concentration, Npt7 is the number of datapoints in radial 
cross-section at x that have a concentration value c greater than or equal to C t h  and 
4y and 4z are the sample spacings in the y -  and z-directions. 

3.3. The topology of the concentration gradient ,field 

A more detailed description of the theory presented here and its applications to 
fluid flows can be found in Chong, Perry & Cantwell (1990). The Maclauriii series 
expansion of the concentration gradient V c  around its local origin is 

where the 0 subscript refers to the parameter evaluated at the local origin, and [A] 
is the Jacobian matrix of Vc. At a critical point, the second term on the left-hand 
side is zero, and this expression reduces to a first-order differential equation, with [A] 
characterizing the local behaviour of Vc around the critical point. 

Critical-point concepts can however be extended by analysing [A] at not only the 
critical points of the concentration field, but at every point in the flow. We are then 
actually looking at the topology of a modified concentration gradient field, Vc'  (the 
left-hand side of (3.8)), which is the deviation of the actual concentration gradient 
from its neighbouring values, analogous to the curvature of the gradient. If this field 
varies slowly with respect to the sample spacing, the topology of this modified field 
will essentially be that of the concentration gradient. 

The eigenvalues of [A] satisfy the characteristic equation 

~ + P , I ~ + Q ~ + R = o ,  (3.9) 
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star node- 

saddle- 
saddle 

Stable node- 
saddle- 
saddle 

Unstable node- 
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star node- 

saddle- 
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FIGURE 6.  The (Q’,R‘)-plane (P’=O). Our data lie under the S; curve. The R‘-axis spans a 
distance five times that of the Q -axis. 

where P ,  Q and R are the invariants of [ A ] :  

1 
2 

P = -trace [A] ; Q = - (P’ - trace [A2])  ; R = -det[A] . (3.10) 

The concentration gradient data can then be compactly displayed as a scatter plot in 
(P,Q,R)-space - where each vector Vc’ is represented in this space by the (P,Q,R) 
of its Jacobian matrix (Aij  = d’c/dxidxjj. 

To avoid looking at this three-dimensional space, our results are projected onto the 
plane P = 0 by modifying [A] to make the data trace-free. Since the Jacobian matrix 
[A] ’ is symmetric, its eigenvalues will be real, and its invariants (Q’, R’j will lie under 
the curve S ’1 : 

(3.11) 

In this (Q’,R’)-plane (figure 6), points which lie upon the S ’1 curve have two identical 
eigenvalues (star node-saddle-saddles, in the jargon of Chong et al. 1990), implying 
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that the concentration field corresponding to this point has a locally axisymmetric 
topology. Points which lie in the right half-plane (R’ > 0) then correspond to 
a Jacobian with two positive and one negative eigenvalue (unstable node-saddle- 
saddles); points which lie in the left half-plane (R’ < 0) then correspond to a 
Jacobian with two negative and one positive eigenvalue (stable node-saddle-saddles). 
And if R‘ = 0 (and Q’ is large), the datapoint has a two-dimensional topology (i.e. 
one of the eigenvalues is negligible compared to the other two). 

For each datapoint evaluated, the procedure is then as follows: (i) calculate the 
nine components of its Jacobian matrix, or the second spatial derivatives of the 
concentration field; (ii) make the Jacobian matrix trace-free by subtracting one-third 
of the trace of [A] from each of the three diagonal matrix elements; (iii) determine 
the invariants of the modified Jacobian Q’  and R’; and (iv) plot the values upon the 
(Q’, R’)-plane. The second derivatives of the concentration field are calculated with 
second-order-accurate central differencing from the lowpass filtered and subsampled 
concentration field used in the previous section (used to avoid problems with noise 
when differentiating). The invariants Q’ and R’ are then calculated and plotted using 
topological analysis software written by R. Sondergaard (Sondergaard et al. 1991). 
To avoid problems with topological degeneracy in the ambient fluid, where both the 
concentrations and the concentration gradients are nearly zero, the invariants are 
calculated only at points where the concentration is greater than 5 out of 255. This 
entire process of calculating and plotting the invariants takes a few minutes for a 
plot of lo5 datapoints. 

Tn addition, the effects of noise on the concentration gradient were investigated by 
adding randomly generated ‘noise’ of +loo/, maximum concentration (zero mean, or 
white noise) and 20% (biased noise) to the median filtered original spatial resolution 
data. After processing the ‘noisy’ data using the same procedures as those used 
with the original data ~ lowpass filtering, and subsampling by a factor of two - 
(Q’, R’)-values are calculated and plotted for the ‘noisy’ data. 

The (Q’,R’)-plots shown in the next Section are not simple scatter plots, but 
rather plots of contours of the number of points within a unit window of a given 
(Q’, R’) location (Soria et uE. 1994). These modified scatter plots enable us to better 
visualize the region near the cusp of the curve S ; ,  where most of the datapoints 
fall, overlapping and obscuring this region. Contours are shown here going through 
(Q’, R’) locations where 1, 10, 100 and 1000 points overlap (to within a unit window); 
note that a ‘contour’ through one point is equivalent to a simple scatter plot. 

4. Results and discussion 
We present in this section results from the concentration field and its gradient. 

Data are presented for seven different jet cases: (i) the Re = 4000 natural jet; 
(ii) the Re = 4000 circularly excited jet (S t  = 0.3); (iii) the Re = 2000 natural jet; 
(iv) the Re = 2000 circularly excited jet (S t  = 0.3); (v) the Re = 1000 natural jet; 
(vi) the Re = 1000 circularly excited jet (St = 0.3); and (vii) the Re = 1000 buoyant 
jet (Fr = 100). The S t  (based on do)  of 0.3 was chosen based on its marked effect on 
the flow, especially in terms of spreading rate, as seen in the previous x-y-t results 
(Yoda et al. 1992), which also implied that nozzle excitation at this S t  amplified the 
antisymmetric large-scale structure. 
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Drum 
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FIGURE 7. Coordinate axes and view orientations for the isoconcentration surfaces. A view of the 
truncated cone along the flow (x) direction; the small and large circles correspond to the upstream 
and downstream ends of this cone. The view along which the slices are acquired by the camera is 
defined as the 0" view. 

This S t  will give a far-field Strouhal number St ,  of 

where f is the nozzle excitation frequency. For our data, 30 < x / d o  < 83, corre- 
sponding to S t ,  = 2Q-150. This S t f  is certainly too large to excite a single resonant 
helical mode (W. C. Reynolds 1992, private communication), but the dependence of 
S t ,  upon the square of the non-dimensionalized downstream coordinate x/do makes 
it impossible to excite a single mode at any fixed nozzle S t  for our region of interest. 

M. G. Mungal & S .  H. Smith (1992, private communication) investigated circularly 
excited jets in the far field at 0.025 < S t  < 0.2, and saw amplification of the helical 
mode at S t f  = 6.4, a surprisingly high value given the typical 'preferred' S t  reported 
for the near field of the jet. Their result implies that circular excitation at even 
these high S t f  still can couple the helical mode, perhaps through subharmonic or 
multimodal interactions. 

4.1. The concentration field 
Two realizations of the R e  = 4000 natural jet and one realization of each of the other 
cases are shown here. The realizations presented here are those with the most zigzag 
or antisymmetric two-dimensional slices upon visual inspection. By focusing upon 
these realizations, we should maximize our chances to see the helical mode. 

Two-dimensional projections of the three-dimensional isoconcentration surfaces are 
presented in this section; the projection orientations are defined in figure 7. In the 
mean, an isoconcentration surface of the jet from 30-83 nozzle diameters downstream 
will be a truncated cone. The radial coordinates are y and z ;  a 0" view of the surface 
is defined to be along the view direction of the camera, corresponding to an image 
plane parallel to the original two-dimensional data slices. The 90" and 270" views 
are then normal views along the y-axis, and the 180" view is the opposite view 
along the z-axis (these angles refer to rotation about the x-axis). A spiral shape 
in these surfaces should be evident as an antisymmetric or zigzag outline in these 
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two-dimensional projections, and the zigzag should be visible along all projection or 
view angles. 

4.2. Rr=4000: natural and circularly excited jets 
Figures 8(a) and 8(h) show rescaled centreline slices for both the natural (case I) 
and circularly excited jet (Figures. 8(c)-8(g) will be discussed subsequently, but 
are shown here for comparison); these figures correspond to the 0" (cf. figure 7) 
centreline slice. In these images of the jet fluid concentration, white corresponds 
to ambient fluid and black corresponds to the maximum jet fluid concentration 
(darker shades imply higher jet fluid or dye concentration). As expected, circular 
excitation appears to enhance the width of the jet. Of particular note are the strongly 
antisymmetric outlines of both the natural and circularly excited jet slices. Our two- 
dimensional slices look qualitatively similar to those of Dimotakis et al. (1983) and 
Dahm & Dimotakis (1990) at similar Re. 

Figure 9 depicts isoconcentration surfaces reconstructed from the subsampled 
versions of the natural jet data at 10, 30, 50 and 80% (of the maximum) threshold 
concentrations at an orientation of about 45". The convoluted and complex 10% 
surface, which should be similar to the outside boundary of the jet, is conical in 
shape and dominated as expected by small spatial scales. The conical and symmetric 
appearance of this external surface implies that the self-similar rescaling applied 
to our instantaneous data (even though self-similarity in this flow is based on mean 
quantities) is valid. Tendrils of ambient fluid are being drawn into the upstream end of 
the large-scale structure in the 30% surface (around the bottom quarter of the surface) 
at an angle of about 45" - an example of the large-scale entrainment mechanism 
described by Komori & Ueda (1985) and Dahm & Dimotakis (1987). Clumping of 
the jet fluid along the downstream dimension into an arrowhead-shaped structure, 
what we might expect to see for coherent structures in the axisymmetric mode, is 
evident in the 50% surface. These large-scale structures upon visual inspection appear 
to be of aspect ratio 2: l  (downstream to radial dimension) in this surface. This result 
agrees with our previous x-y-t autocorrelation results (Yoda et al. 1992), where we 
reported a 'spacing' between our large-scale structures of the order of two large-scale 
passage times for the 67% isoconcentration surface. In the highest-concentration 
surface (SO%), two isolated pieces of high-concentration fluid are visible in the centre 
of our structure. 

The spiral should be most evident at higher concentrations, because the lower- 
concentration fluid tends to be almost stationary fluid that has been expelled from 
the jet core. If we then look at an intermediate surface (50%) from four view angles 
spaced 45" apart (Figure lo), we see that the arrowhead-shaped structure is roughly 
axisymmetric, and it does not appear to be superimposed upon a spiral (i.e. like a 
set of beads strung on a spring). The bottom of this clumped structure is almost 
conical, and at about a 45" angle to the horizontal, due perhaps to the entrainment 
of ambient fluid there along this direction seen in the 10% surface. If we visualize 
the 50% isoconcentration surface for the second Re = 4000 natural jet case at the 
same four view angles (Figure ll),  we see the downstream and upstream ends of 
two such clumped structures at the top and bottom, respectively, of the picture and 
nothing in the centre; note again that the downstream end of the upstream (upper) 
clump is again arrowhead-shaped. Although results are not presented here, we have 
looked at numerous isoconcentration surfaces at other thresholds for both Re = 4000 
realizations and we have not seen indications of a spiral in any of them, despite the 
presence of numerous antisymmetric slices (upon visual inspection). 
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Figure 12 shows isoconcentration surfaces for a range of threshold concentrations 
for the circularly excited jet (10, 30, 50 and 70%). The view, about 45", is identical 
to that used in figure 9. The 10% surface looks much more disorganized than its 
natural jet counterpart, and is dominated by small spatial scales of similar size. Not 
surprisingly, the clumping of the higher-concenlration fluid along the downstream 
dimension that we saw in the natural jet is not as evident, even in the 50 and 70% 
surfaces, indicating that the circular excitation has suppressed this structure in the 
axisymmetric mode. The flow appears to be generally more disorganized owing to the 
large-amplitude circular excitation, and the higher threshold concentration surfaces 
imply that the centreline of this jet is much more distorted away from the vertical. 

Although again our S t ,  is too large to excite resonant interactions with the helical 
mode, we would still expect to see some evidence of the helical mode if it is as 
dominant as theory predicts. To this end, four views rotated by 45" are depicted in 
figure 13. Again, no clear spirals (or persistent zigzags) are evident in any of these 
views. The 90" view of the 50% surface shows a clump with an arrowhead-shaped 
downstream end not unlike that in figures 10 and 11. 

4.3. Re = 2000: natural and circularly excited jets 

Figures 8(c) and 8(dj show rescaled centreline slices for both the natural and circularly 
excited jet. The natural jet axial slice has a clearly antisymmetric or zigzag outline, 
and we initially thought that this case represented our best chance to see the helical 
mode in a three-dimensional rendering. The circularly excited slice again shows the 
enhanced spreading rate due to nozzle excitation. The slices are narrower than their 
higher-Re counterparts, in part because the virtual origin is further downstream for 
this case. 

Figure 14 depicts surfaces at different threshold concentrations for the natural jet 
at an angle of approximately 45". The surfaces look generally less disorganized than 
the higher-Re case. A zigzag shape is clearly visible in the 15" view of the 30% 
surface (figure 15j, but if this surface is viewed at various orientations, we see that 
although it appears to be antisymmetric with respect to the jet axis from one viewing 
angle, a perpendicular view from 105" results in a surface with a symmetric outline 
(the 15" viewing angle was chosen because the surface from this view showed the 
most clearly zigzag outline of all the views). The other two angles (60" and 150") are 
then the intermediate views. So the zigzag shape seen in two-dimensional slices of the 
jet appears in three dimensions to actually be a simple sinusoid, instead of a spiral. 
The clumping of higher-concentration fluid seen in the higher-Re case is much less 
evident here. 

Looking at the different isoconcentration surfaces at an orientation identical to 
that used in figure 14 for the corresponding circularly excited case (figure 16), we 
see again that circular excitation results in a much more disorganized flow, even 
in the far field. As in all the cases described in this section, we have inspected 
numerous isoconcentration surfaces not presented here for each dataset from various 
perspectives and failed to see any helical shapes. 

4.4. Re = 1000: natural. circularly excited and buoyant jets 
Figures 8(e), 8 0  and 8(g) show rescaled centreline slices for the natural, circularly 
excited and buoyant jet. In all cases except the buoyant jet, the intrusions of ambient 
fluid appear to be antisymmetric with respect to the jet centreline, giving the slices 
a zigzag appearance. If we look at isoconcentration surfaces at various thresholds 
for the natural, circularly excited and buoyant jet cases (figures 17-19), all again at 



0"
 v

ie
w

 

xl
do

 =
 3

0 

45
" 

vi
ew

 

xl
d,

 =
 3

0 

10
%

 s
ur

fa
ce

 
W

 

P
 

20
%

 s
ur

fa
ce

 
W

 

xl
d,

 =
 8

3 

x/
d

, 
=

 3
0 1 

90
" 

vi
ew

 
13

5"
 v

ie
w

 
xl
d,
, =

 3
0 

30
%

 s
ur

fa
ce

 

xl
d,

 =
 8

3 

F
IG

U
R

E
 

13
. 

D
if

fe
re

nt
 v

ie
w

s 
of

 t
he

 5
0%

 i
so

co
nc

en
tr

at
io

n 
su

rf
ac

e 
fo

r 
th

e 
R

e 
=

 4
00

0 
ci

rc
ul

ar
ly

 e
xc

ite
d 

je
t. 

xl
d,

 =
 8

3 

F
IG

U
R

E
 

14
. 

T
he

 1
0,

 2
0.

 3
0 

an
d 

50
%

 i
so

co
nc

en
tr

at
io

n 
su

rf
ac

es
 f

or
 

th
e 

R
e 

=
 2

00
0 

na
tu

ra
l 

je
t. 

T
he

 s
ur

fa
ce

s 
ar

e 
sh

ow
n 

fr
om

 t
he

 s
am

e 
vi

ew
po

in
t 

as
 i

n 
fi

gu
re

 9
. 

%
 

r 3
 

og
 E
 



15
' 

vi
ew

 
60

" 
vi

ew
 

10
%

 su
rf

ac
e 

20
%

 s
ur

fa
ce

 
xi

d,
, =

 3
0 

xl
d,

 =
 3

0 1 
xi

d,
 =

 8
3 

xl
d,
 =

 8
3 

x/
d,

, =
 3

0 
10

5"
 v

ie
w

 
15

0"
 v

ie
w

 
30

%
 s

ur
fa

ce
 

x/
dA

 =
 3

0 

1 
xl

d"
 =

 8
3 

F
IG

U
R

E
 15

. 
Si

m
ila

r 
to

 f
ig

ur
e 

10
, 

bu
t 

fo
r 

th
e 

30
%

 
su

rf
ac

e 
of

 
th

e 
R

e 
=

 2
00

0 
na

tu
ra

l 
je

t. 
A

lt
ho

ug
h 

th
e 

15
" 

vi
ew

 s
ho

w
s 

a 
cl

ea
rl

y 
zi

gz
ag

 
ou

tli
ne

, 
th

e 
or

th
og

on
al

 1
05

" 
vi

ew
 i

s 
st

ra
ig

ht
, 

im
pl

yi
ng

 t
ha

t 
th

is
 s

ur
fa

ce
 

is
 a

 
si

nu
so

id
al

 c
ol

um
n 

in
 t

hr
ee

-d
im

en
si

on
al

, 
ra

th
er

 t
ha

n 
th

e 
sp

ir
al

 
co

rr
es

po
nd

in
g 

to
 t

he
 h

el
ic

al
 i

ns
ta

bi
lit

y 
m

od
e.

 

50
%

 s
ur

fa
ce

 

3 5:
 
3
 
a
 

L
.
 

z
 

xt
d,

 =
 8

3 

F
IG

U
R

E
 

16
. S

im
ila

r 
to

 fi
gu

re
 1

4,
 b

ut
 f

or
 th

e 
ci

rc
ul

ar
ly

 e
xc

ite
d 

ca
se

 (
St

=
0.

3)
. 

W
 

W
 

ul 



336 M.  Yoda, L. Hesselink and M.G. Mungal 

an orientation angle of about 45”, we see no indication of a spiral in any of these 
surfaces. The highest-concentration surfaces for the natural and circularly excited jets 
(figures 17 and 18) show that the highest-concentration fluid is now evenly distributed 
in the downstream direction at this Re. The buoyant jet has a very uneven distribution 
of high-concentration fluid along the downstream direction (see for example the 70% 
surface in figure 19), consistent with the results of Papantoniou & List (1989), who 
reported that the concentration field of buoyant jets was ‘very intermittent’ and that 
local concentrations could reach values up to three or four times the mean level, 
compared to thc two times reported for natural jets by Dahm & Dimotakis (1990). 
Again, the dominant spatial scale in all the Re=1000 surfaces appears to be larger 
than for the higher Re cases. The (slices of the) weakly buoyant case appears to be the 
most qualitatively similar to the pictures in Dimotakis et al. (1983) at Re d 2300, with 
its marked intrusions of ambient fluid and prominent hammerhead-shaped structures. 

4.5. Concentration jield statistics 

Figure 20 shows the non-dimensionalized concentration centroid coordinates for all 
seven of the jet cases. In all cases, the coordinates have been smoothed by uniformly 
lowpassing over ten adjacent points. A spiral centroid (which would mean that a 
spiral shape existed in the concentration field, corresponding to the helical mode) 
would look like a spiral in our non-dimensionalized centroid coordinates; whether 
it spiralled in or out (or remained in a circular orbit) as x increases would depend 
on the pitch of the spiral. None of the centroids show a spiral shape, and some of 
the centroids (e.g. a, c a n d f )  are roughly sinusoidal, waving back and forth as x 
increases. Not surprisingly, the circularly excited jet cases have the largest range of 
centroid variation. 

Figure 21 shows the area inside several isoconcentration contours in a ( J ,  z)-cross- 
section of the data as a function of downstream location x for both of the Re=4000 
natural jet cases. The area has been normalized by the maximum value in the data, 
and also by (x - x,)’ to account for the (mean) spread of the jet. The curves for 
concentrations higher than 30% in the graph for case I have nearly zero area for x/do 
below 40 and above 65. This lack of higher-concentration fluid in the downstream 
dimension will result in the large-scale structure or arrowhead-shaped ‘clump’ clearly 
visible in the 50% surface in figure 9. If we assume that the downstream extent of this 
large-scale structure of 25d,  (= 65d, - 4 0 4  is independent of threshold concentration, 
this downstream extent is of the order of the local mean jet width at the midpoint 
downstream location of x = 53d,. 

Similarly, the higher-concentration curves in the case I1 plot clearly show almost 
no higher-concentration jet fluid present between x /d ,  values of 50 and 60, cor- 
responding to the region between the downstream and upstream ends of the two 
clumped structures visible in figure 11. Note that the area inside the circular iso- 
concentration contour expected in time average would be a horizontal line in these 
non-dimensionalized coordinates. The sharpest drop in area is between the 10 and 
20% contours, owing to the large amount of almost stationary low-concentration fluid 
which the jet ejects and then eventually re-entrains. Figure 22 shows the area inside 
the 50% isoconcentration contour for the two Re=4000 natural jet cases and the 
Re = 1000 natural jet, as well as the area inside the 30% isoconcentration contour for 
the Re = 2000 natural jet (see the corresponding isoconcentration surfaces in figures 
10, 11, 15, and 17) grouped again in terms of Reynolds number. In agreement with 
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10% surface 30% surface 

xld, = 83 

50% surfxe 70% surface 
xld, = 30 

dd, = 83 

FIGURE 19. Similar to figure 17, but Tor the (weakly) buoyant jet. Note the large hammerhead-shaped 
structure on the lower right-hand side of the 10% surface, like those reported by Dimotakis et al. 
(1983). 

the isoconcentration surface results, the clumping of the higher-concentration jet fluid 
is not visible at the two lower Re. 

4.6. Discussion of concentration results 
Large-scale organized structures are evident in the far field of the Re = 4000 jet in the 
form of roughly axisymmetric ‘clumps’ of higher-concentration fluid. These structures 
are approximately conical at the downstream edge due to entrainment of ambient 
fluid into the upstream end of the next structure downstream, and are in downstream 
extent of the order of the local jet width S(x). This clumping is the three-dimensional 
analogue of the large regions of nearly constant-concentration fluid observed by 
Dahm & Dimotakis (1987) in planar concentration measurements in liquid jets and 

FIGURE 20. Non-dimensionalized centroid coordinates [(x) us. <(x) for: ( a )  the Re = 4000 natural 
jet (case I); ( b )  the Re = 4000 circularly excited jet; ( c )  the Re = 2000 natural jet; ( d )  the Re = 2000 
circularly excited jet; ( e )  the Re = 1000 natural jet; (f) the Re = 1000 circularly excited jet; and (g) 
the Re = 1000 buoyant jet. The square indicates the furthest upstream location for each case, and 
the arrows indicate the flow direction. The plusses mark centroid coordinates evenly spaced about 
9d, apart along x. The [- and (-axes have identical dimensions. 
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FIGURE 21. Normalized area inside a isoconcentration contour in a y - z slice of the data as a 
function of x / d o  for both cases of the Re = 4000 natural jet: case I and case 11. The maximum area 
has been rescaled to unity. Data are shown for the 10, 30, 50, and 70% of maximum concentration 
contours (labelled in the case I1 plot; the case I graph uses identical line types). The area inside the 
50% contour is depicted with the thick line. All data have been normalized by thc maxmum area 
as well as by (x - x,)' to account for the spread rate. An error bar is shown on the left side for the 
10% cwie  (based on the f 5 %  r.m.s. error). 

the 'ramps' spaced at about a single large-scale passage time observed in single- 
point concentration measurements by Dowling & Dimotakis (1990) in gaseous jets. 
These structures are present in our data at only the highest Re; this result, when 
considered with the 'flame length' results of Dahm & Dimotakis (1987), suggests that 
this large-scale structure is unique to fully turbulent jets. 

Although organized large-scale structure is evident in this flow, we have failed to 
see any evidence of the helical mode predicted by stability theory. It is possible that 
the number of realizations analysed here is too small to capture the expanding spiral 
structure hypothesized by Dimotakis et al. (1983), but experimental and theoretical 
evidence suggest that this structure should be both robust and common. Mungal, 
Lozano & van Cruyningen (1992) reported from temporal and axial visualizations of 
a Re = 2 x 10' air jet that organized large-scale structure in the far field of this flow 
was clearly evident, present at almost all downstream locations (robust) and most 
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FIGURE 22. Similar to figure 21, but only for the area inside the 50% contour for the Re=4000 and 
1000 jets and the 30% contour for Re=2000 jets. In all the plots, the natural jet case is the heavy 
solid line (both cases I and I1 are shown as marked in the Re = 4000 plot), the circularly excited 
case is the dotted line and the buoyant case is shown by the dashed line. Again, the maximum area 
has been rescaled to unity. 

importantly, present at almost all times in the flow (common). Similar experiments in 
the self-similar region of a water jet of Re = 5000 (Yoda et al. 1992; carried out in 
the same facility as the present results) verified these results, and in addition implied 
that circular forcing at S t  = 0.3 enhanced the presence of antisymmetric structures, 
and therefore the helical mode. 

Based on the robustness and presence of this large-scale structure in the flow 
at almost all times, we thought that our chances of seeing the helical mode in 
an instantaneous three-dimensional visualization over a large extent of the jet as 
a spiral were excellent. The three-dimensional data from both natural (unforced) 
and circularly excited jets show, however, that the far field of the jet in three 
dimensions is not in the form of an expanding spiral, but instead appears to be in the 
form of a simple sinusoid, even when two-dimensional slices of the data are clearly 
antisymmetric in shape. In other words, the antisymmetric patterns seen in axial 
slices of the jet far field appear to be parallel slices of a simple sinusoid in three 
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(4 (b) 

FIGURE 23. (a) Cartoon of the +1 helices. These paired helices have a symmetric outline from the 
view along the z-axis (x-y projection) and an antisymmetric zigzag outline from the orthogonal view 
along the y-axis (x-z projection). x is the flow direction. (b)  The spiral vortex filaments pictured in 
(a) could originate via vortex reconnection interactions from the near-field column of tilted vortex 
loops. 

dimensions, instead of radial slices of an axisymmetric spiral. This result is quite 
unexpected. 

We propose based on these results that the structure of the far field of the jet 
consists not of a single expanding spiral, but of a pair of expanding counter-rotating 
helical vortex filaments, or f 1 helices (B. J. Cantwell 1992, private communication) 
(figure 23a). This model is based upon the following four factors: 

(a )  The f l  helices are in agreement with theory, which predicts that the n = +1 and 
n = -1 modes are equally unstable (and therefore equally common). Furthermore, 
the coexistence of these counter-rotating helices gives a swirl-free flow. 

(b )  In terms of large-scale structure, f l  helices would result in the axisymmetric 
clumping of higher-concentration fluid seen in our and other researchers’ results. 

(c) This structure could explain two-dimensional experimental results (e.g. Mat- 
tingly & Chang 1974; the ‘mode contamination’ reported by Petersen et al. 1988; 
Yoda et al. 1992) which report the presence of both symmetric and antisymmetric 
structures in two-dimensional measurements in the near and far fields. Both the ax- 
isymmetric ( n  = 0) and the ‘multiple’ helical (In1 > 2) modes lead to shapes which are 
always symmetric about the jet axis. Therefore only the combination of the n = +1 
modes will result in a structure with both symmetric and antisymmetric axial slices, 
depending upon the azimuthal orientation. If these counter-rotating spirals rotate 
about their (the jet) axis, we would expect to see both antisymmetric and symmetric 
patterns in even a stationary two-dimensional axial visualization. 

( d )  In terms of the origins of this far-field structure, it seems plausible that this 
counter-rotating pair of helices could be caused by vortex reconnection interactions 
(Schatzle 1987; Kida, Takaoka & Hussain 1991) between the tilted near-field vortex 
rings (Hussain & Zaman 1981; Parekh, Leonard & Reynolds 1988) as they are 
convected downstream and approach each other. Although the jet must remain swirl- 
free, fixing the relative amplitude of the two helices, their relative phase is most likely 
to be determined by the initial interactions between neighbouring tilted vortex rings 
(figure 23b). The vortex simulations of Martin (1991) of a near-field jet under n = f l  
excitation show a similar large-scale paired helix structure, and the reorganization of 
the two helical structures into a column of tilted and distorted ring-like structures. 
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We would expect from this model that the jet would be highly receptive, even 
in the far field, to a combination of axial and circular excitation. This pro- 
posed structure may therefore explain the bifurcating and blooming jet results of 
Lee & Reynolds (1 985) and Parekh et al. (1988), who were able to drastically change 
the jet structure, even in terms of its far-field asymptotic state, with combined axial 
and orbital excitation at the jet nozzle. 

Finally, this model unifies two instantaneous concentration fields proposed for the 
far-field modes of the jet based upon two-dimensional axial observations. The first 
model, proposed by Dahm & Dimotakis (1990) for the axisymmetric mode, consists 
of large symmetric regions of constant-concentration fluid. They showed that the 
resultant instantaneous stepwise downstream concentration decay converged over 
time to the smooth l /x  mean decay. Mungal & O’Neil (1989) proposed an analogous 
picture for the helical mode, consisting of antisymmetric or zigzag regions of constant 
concentration, again associated with an instantaneous stepwise concentration decay. 
and hypothesized that the jet continuously ‘switches’ between the axisymmetric and 
helical modes. The entrainment predicted by these two models, which is visible 
in the work of Shlien (1987), coexist in the paired helix model ~ they are simply 
two-dimensional ‘slices’ of the same structure at different orientations. 

The data presented and analysed here have deliberately been biased towards the 
axial slices which showed the most antisymmetric patterns. This criterion was based 
on simple geometric arguments - a two-dimensional slice of a spiral along its axis is 
a zigzag - and previous axial visualizations, which equated antisymmetric or zigzag 
shapes in the far field of the jet with the presence of the helical mode. Although it 
is possible that we are investigating atypical data, we have clearly shown that the far 
field of the jet is not in the form of an expanding spiral, even when two-dimensional 
slices of the jet are antisymmetric, since it is geometrically impossible for a slice of 
such a shape to be symmetric with respect to the jet axis. In addition, if the jet is in 
the form of a (rotating) double helix, the data here actually are representative - and 
only the orientation between the image planes and the paired helices has been biased. 

Our proposal that the jet is in the form of a double (rather than single) helix 
is certainly not the only possible explanation for the results, but it is suggested as 
the simplest model which appears to fit both experiment and theory. Note that 
of the modes predicted by linearized stability theory, only the combination of the 
n = +1 modes would give rise to a structure which is symmetric from one viewpoint 
and antisymmetric from the orthogonal viewpoint. In addition, the model provides 
a logical explanation of how the proposed far-field structure originates from the 
commonly accepted near-field structure. 

4.7. The concentration gradient 
In addition to deducing the large-scale structure and modes of the self-similar region 
of the jet, we can use our concentration data to investigate and characterize the 
structure of this flow at intermediate (= O(&)) spatial scales. We expect that our 
picture at these scales will be typical of turbulent free shear flows. 

Before analysing the local topology of every point in the flow, critical-point dis- 
tributions were obtained for extensively smoothed concentration gradient fields of 
the three Re = 1000 cases (Yoda 1992). Since smoothing represses the smaller-scale 
structure and noise, the results pertain only to the concentration field at coarse spatial 
scales (> &); the data were lowpass filtered over a 3 x 3 x 3 window four times, 
resulting in a spatial resolution nine times more coarse than that used for the iso- 
concentration surfaces. The results from these coarsely sampled concentration fields 
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FIGURE 24 (a-a). For caption see facing page. 

imply that the the buoyant jet concentration field has the greatest number of repelling 
nodes (i.e. isolated local minima), followed by the circularly excited and then natural 
jet fields, with the number of repelling nodes for the buoyant and circularly excited 
cases exceeding that for the natural jet by 50-100%. Physically, this implies that on 
an intermediate scale more isolated ‘pockets’ of lower-concentration or ambient fluid 
are present in the interior of the buoyant jet than in that of either the circularly 
excited or natural jet. Despite the limited sample space and spatial resolution, this 
result is consistent with the buoyant jet results of Papantoniou & List (1989), who 
reported that ‘the ambient fluid presence in the flow interior is greatly increased’ in 
the presence of buoyancy. 

We now extend these critical-point classification methods to every point in the jet 
flow. Figure 24 shows our transformed trace-free data plotted in the (Q ’, R ’)-plane 
( P  ’ = 0) for all seven cases. These modified scatter plots are all qualitatively similar, 
with the bulk of the datapoints near the cusp of the S1 ’ curve. The contour for 1000 
points is closest to the origin (i.e. has the largest Q’), followed by thc 100 and 10 point 
contours, respectively. In addition, the points appear to be evenly distributed between 
the right (R’ > 0) and left (R’ < 0) half-planes. The most striking feature of these 
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Q’ 

’t 
R’ 

Q’ 

FIGURE 24. Q’  - R’ plots for the seven flow cases: ( u )  Re=4000 natural jet (case I ) ;  ( h )  Re=4000 
circularly excited jet; (c) Re=2000 natural jet; ( d )  Re=2000 circularly excited jet; ( e )  Re=1000 
natural jet; (f) Re=1000 circularly excited jet; and (g) Re=1000 buoyant jet. Contours are drawn 
through points where 1, 10, 100 and 1000 points overlap; note that a ‘contour’ through a single 
point is identical to a simple scatter plot. The contours through 10, 100 and 1000 points are 
progressively closer to the origin. Each plot comprises between 80000 and 180000 points. The axes 
have arbitrary units, and are identical in dimension for all seven cases. Note that the R‘-axis spans 
a range five times that of the Q’-axis. 

plots, which describe the local topology of the concentration gradient field, however, 
is that outside of the cusp region, the data tend to ‘hug’ the curve S1 ’, implying that 
these points locally have a nearly axisymmetric topology (saddle-saddle-star nodes, 
in the terminology of Chong et al. 1990). Virtually none of the data lie in the region 
of two-dimensional topologies, or near the negative Q ’-axis away from the origin. 

The (Q’, R’)-scatter plots of the data with white or zero mean noise were qual- 
itatively similar to those for the original data (Yoda 1992), but those for the data 
with (severe) biased noise were asymmetric, with far more points in the R‘ > 0 
half-plane. Figure 25 shows such a plot for the Re = 1000 natural jet case with biased 
(+20% maximum) noise; the data are clearly biased towards the right half-plane in 
comparison with the (Q’,R’)-plot for the original data (Figure 24g). 

Large magnitudes of R ’ are associated with large magnitudes of the concentration 
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Q’ 

R’ 

FIGURF 25. Q’-R‘ scatter plot for the Re = 1000 natural jet data with ‘biased’ noise. Randomly 
generated values of up to 20% of the maximum concentration value were added to the original 
median filtered data; the resultant data were processed using methods identical to those used with 
the original data to obtain the concentration gradient and corresponding ( Q ’ ,  R‘) values. Note the 
pronounced asymmetry of the data. 

gradient, since R’ is proportional to the determinant of the Jacobian of Vc. This 
implies that the concentration field in regions of the flow where IVcl is large (at least 
to this spatial resolution) tends to be axisymmetric, and is compressed along the axis 
of symmetry. Such a topology may correspond to a sheet (the nearly axisymmetric 
topology implies a sheet-like, rather than ribbon-like, structure) of fluid which is of 
significantly higher (R’ > 0) or lower (R’ < 0) concentrations than the mean value. 
Both types of sheets, which from the symmetry of the (Q’, R’)-plots about the Q’-axis 
are about equally common, would be associated with large values of IVcl. 

Ruetsch & Maxey (1991) have reported in DNS studies of low-Prandtl-number 
( P r  d 1) homogeneous turbulence that the largest passive scalar dissipation values 
(25 - 301VT12) are associated with sheet-like structures of 1&20 times their thickness 
in planar extent. From their fully resolved concentration measurements in high-Sc 
flows, Buch & Dahm (1991) have reported that the scalar dissipation, and therefore 
IVcl, field is composed almost entirely of thin, locally planar layer-like structures, with 
a thickness of O(iB). Adjacent layer-like structures tended to remain locally parallel 
for ‘many’ layer thicknesses. Although these individual sheet-like structures cannot be 
seen in our lower spatial resolution measurements, the sheets implied by the (Q’,R‘)- 
plots may be due to the superposition of several such adjacent locally parallel layers. 
So even at our resolution of 100 times the diffusion-limited spatial scale, regions of 
the passive scalar field with large values of IVcl appear to be organized into locally 
planar sheet-like structures. 

5.  Conclusions 
We report here measurements of the virtually instantaneous three-dimensional 

concentration field in a round high-Sc jet of Reynolds number Re = 1000-4000 over 
the downstream distance range 30 < x/do < 83. Circular excitation at a Strouhal 
number St = 0.3 was used to try to cnhance the presence of the supposedly dominant 
helical mode. To our knowledge, these measurements are the first of this type. 
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To summarize, we go back to the issues raised in the Introduction. What is 
the instantaneous three-dimensional large-scale structure in the far field of the jet? 
Organized large-scale structure appears to exist in the far field of the fully turbulent 
(Re = 4000) jet in the form of roughly axisymmetric ‘clumps’ of higher-concentration 
(>50% maximum) jet fluid with a conical downstream end. These structures are 
about the local jet diameter in downstream extent, in agreement with results in both 
water and air jets (Dahm & Dimotakis 1990; Dowling & Dimotakis 1990). 

How does the dominant helical mode predicted by stability theory ‘shape’ this 
large-scale structure? From previous work we expected to see the helical mode as a 
spiral in the three-dimensional concentration field, but we have not seen any such 
structures in our data. No spiral structures were evident even in the circularly excited 
cases. The antisymmetric two-dimensional axial images that we and other researchers 
had previously thought to be slices of a three-dimensional spiral appear to be slices 
of a simple sinusoid in three dimensions. 

Our results suggest a revised picture of the large-scale structure in the self-similar 
region of the jet. Instead of a single spiral, as suggested by Dimotakis et al. (1983), 
the jet appears in the far field to consist of a pair of counter-rotating spirals, or 
f l  helices. This model has four advantages: (i) linear stability theory predicts that 
positive and negative (f l)  helices are equally dominant, and the fl helices result 
in a swirl-free flow; (ii) this pair of helices would result in the large-scale structure 
observed in several flow visualization studies; (iii) this structure is consistent with 
previous experimental results; and (iv) this structure is a logical consequence of the 
jet near-field structure. As the near-field column of tilted and strained vortex rings 
approach each other, they should interact via vortex reconnection interactions to 
form this ‘double helix’ structure. The phase between the paired helices would then 
be determined by the initial near-field vortex ring interactions. This model unifies 
the two instantaneous concentration fields proposed for the axisymmetric and helical 
modes by Dahm & Dimotakis (1990) and Mungal & O’Neil (1989), respectively - 
both models are simply ‘slices’ of the same structure at different orientations. 

Although circular excitation failed to enhance the presence of the helical mode 
(and should not, if the above model is correct), it did have two effects on the flow: (i) 
from the centroid results, it clearly distorts the jet centreline away from the vertical; 
and (ii) it appears to result in a qualitatively more chaotic-looking (smaller spatial 
scales) concentration distribution. Both effects are visible even in the far field of the 
jet. The weakly buoyant case (Fr m 100) appears to be the most qualitatively similar 
to the lower-Re cases visualized by Dimotakis et al. (1983). 

Finally, what is the local structure of the concentration field? Even at this in- 
termediate spatial resolution, regions with a large concentration gradient magnitude 
appear to be organized into locally planar sheet-like structures, with concentration 
values both significantly below and above the local mean. Our resolution is of course 
insufficient to resolve the fine-scale layers associated with large values of scalar dis- 
sipation (Ruetsch & Maxey 1991; Buch & Dahm 1991), but the sheets implied by 
our data may reflect the superposition of several of the locally parallel and adjacent 
fine-scale layers reported by Buch & Dahm at high Sc. 

Our results suffer through two factors: (i) we are restricted by the limitations of 
current technology to measurement and analysis of a single or at best a few realizations 
of the flow; and (ii) in order to capture a few local flow widths, the spatial resolution of 
the measurements is two orders of magnitude above the diffusion-limited spatial scale. 
Nevertheless, even a single instantaneous three-dimensional realization at this spatial 
resolution of the passive scalar concentration in this turbulent high-Sc free shear flow 
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represents an advance in our measurement capabilities. Our data have enabled us to 
visualize in three dimensions the large-scale structure in a turbulent high-Schmidt- 
number flow. The antisymmetric shapes in two-dimensional axial images of the jet 
are not slices of a three-dimensional spiral, and appear instead to be slices of a simple 
sinusoid in three dimensions, suggesting that both the +I and -1 helical modes are 
simultaneously present in the flow. 
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